Anzeige

Anzeige

Lesedauer: 4 min
20. Juli 2021
KI-Methoden
Kommissionierroboter intelligenter machen
Bild: Festo SE & Co. KG

Produktion, Lager, Versand – wo Güter hergestellt, gelagert, sortiert oder verpackt werden, wird auch kommissioniert. Es werden also mehrere einzelne Waren aus Lagereinheiten wie Kisten oder Kartons entnommen und neu zusammengestellt. Festo forscht im Projekt Flairop gemeinsam mit dem Karlsruher Institut für Technologie (KIT) und Partnern aus Kanada, um Kommissionierroboter mit verteilten KI-Methoden intelligenter zu machen. Dafür untersuchen sie, wie man Trainingsdaten von mehreren Stationen, aus mehreren Werken oder sogar Unternehmen nutzen kann, ohne dass Beteiligte sensible Unternehmensdaten herausgeben müssen.

Künstlichen Intelligenz für bessere Lösungen

„Wir untersuchen, wie möglichst vielseitige Trainingsdaten von mehreren Standorten genutzt werden können, um mit Hilfe von Algorithmen der künstlichen Intelligenz robustere und effizientere Lösungen zu entwickeln, als mit Daten von lediglich einem Roboter“, sagt Jonathan Auberle vom Institut für Fördertechnik und Logistiksysteme (IFL) am KIT. Dabei werden an mehreren Kommissionierstationen Artikel von autonomen Robotern mittels Greifen und Umsetzen weiterverarbeitet. An den verschiedenen Stationen werden die Roboter mit ganz unterschiedlichen Artikeln trainiert. Am Ende sollen sie in der Lage sein, auch Artikel anderer Stationen zu greifen, die sie vorher noch nicht kennengelernt haben. „Durch den Ansatz des verteilten Lernens, auch Federated Learning genannt, schaffen wir den Spagat zwischen Datenvielfalt und Datensicherheit im industriellen Umfeld“, so der Experte.

Leistungsstarke Algorithmen für Industrie und Logistik 4.0

Bisher wurde Federated Learning überwiegend im medizinischen Sektor zur Bildanalyse eingesetzt, wo der Schutz von Patientendaten natürlich einen besonders hohen Stellenwert hat. Daher gibt es für das Training des künstlichen neuronalen Netzes keinen Austausch von Trainingsdaten wie Bilder oder Greifpunkte. Es werden lediglich Teile von gespeichertem Wissen – die lokalen Gewichte des neuronalen Netzes, die sagen, wie stark ein Neuron mit einem anderen verbunden ist – zu einem zentralen Server übertragen. Dort werden die Gewichte von allen Stationen gesammelt und mit Hilfe verschiedener Kriterien optimiert. Anschließend wird die verbesserte Version zurück auf die lokalen Stationen gespielt und der Prozess wiederholt sich. Ziel ist die Entwicklung von neuen leistungsstärkeren Algorithmen für den robusten Einsatz von künstlicher Intelligenz für die Industrie und Logistik 4.0 unter Einhaltung der Datenschutzrichtlinien.

Roboter lernen voneinander

„Im Forschungsprojekt Flairop entwickeln wir neue Wege, wie Roboter voneinander lernen können, ohne sensible Daten und Betriebsgeheimnisse zu teilen. Das bringt zwei große Vorteile: Wir schützen die Daten unserer Kunden und wir gewinnen an Geschwindigkeit, weil die Roboter auf diese Weise viele Aufgaben schneller übernehmen können. So können die kollaborativen Roboter z.B. Produktionsmitarbeiter bei sich wiederholenden, schweren und ermüdenden Aufgaben unterstützen“, sagt Jan Seyler, Head of Advanced Develop, Analytik und Steuerung bei der Festo SE & Co. KG.

Während des Projektes werden für das Training der Roboter insgesamt vier autonome Kommissionierstationen aufgebaut: Zwei am KIT Institut für Fördertechnik und Logistiksysteme (IFL) sowie zwei bei Festo mit Sitz in Esslingen am Neckar.

Thematik: Lösungen
Festo SE & Co. KG
http://www.festo.com

Das könnte Sie auch interessieren

Bild: Felder KG
Bild: Felder KG
Maschine mit
vielen Optionen

Maschine mit vielen Optionen

Sie ist mehrfach ausgezeichnet. Die kompakt Creator 950 von Format 4 hat alles, was eine Einstiegsmaschine für CNC-Komplettbearbeitung braucht. Das neuartige Werkstückführungskonzept ermöglicht ein effizientes 4-seitiges Formatieren des Werkstückes ohne die üblicherweise notwendigen Rüstzeiten für Sauger- und Konsolenpositionierung. Das obenliegende Bearbeitungsaggregat, ein intuitiv bedienbares Softwarekonzept und innovative Automatisierungsdetails, wie das Dübelaggregat, machen die Maschine flexibel, effizient und präzise. Wir stellen sie kurz vor.

Anzeige